Untreated infected (upper row) and milk-treated infected (lower row) fields are reported for HSV-1, HSV-2, HCMV, RSV, HRhV, and HRoV

Untreated infected (upper row) and milk-treated infected (lower row) fields are reported for HSV-1, HSV-2, HCMV, RSV, HRhV, and HRoV. virus type 2. By contrast, both methods reduced significantly the antiviral activities against rhinovirus and herpes simplex virus type 1. Unexpectedly, Holder pasteurization improved milk’s anti-rotavirus activity. In conclusion, this study contributes to the definition of the pasteurization method that allows the best compromise between microbiological safety and biological quality of the donor human milk: HTST pasteurization preserved milk antiviral activity better than Holder. 0.05. Results and discussion Antiviral activity of HM This paper reports around the antiviral activity of raw milk and investigates the impact of two pasteurization techniques on such biological property. The first set of experiments was dedicated to assess the antiviral activity of two HM raw milk pools against a panel of viral pathogens causing diseases in newborns and children, and representing different viral structures and families: enveloped DNA viruses, as HSV-1, HSV-2, and HCMV (family); enveloped RNA viruses, as RSV (family); naked single strand RNA virus, as HRhV (family); naked double strand Ipfencarbazone RNA virus, as HRoV (family). Figure ?Determine1A1A reports the antiviral activity of the two HM pools, expressed as ID50, i.e., the dilution of milk sample inhibiting the 50% of infectivity. The results revealed that both pools exhibited antiviral activity against all viruses with ID50 ranging from 0.010 to 0.183. As for the viruses belonging to the family, both pools exhibited a similar antiviral activity against HCMV, whereas a statistically significant difference in anti-HSV-1 and anti-HSV-2 activity was observed ( 0.05). These results confirm previous findings that HM samples were endowed with anti-HCMV activity, although to a different extent from sample to sample and from mother to mother (6, 28). Our data evidenced a high activity against HSV-1 and HSV-2, in contrast with other studies that observed weak or no antiviral effect (29C31) for raw HM, whereas, when HM samples were aspirated from the stomachs of the infants within few hours of feeding, they were reported to reduce HSV-1 titers (31). The observed inhibitory activity of milk pools with ID50 around of 0.01 against RSV and 0.05 against HRhV supports clinical observations that maternal milk protects infants against respiratory infections, as bronchiolitis, during the first year of life, and encourages breastfeeding as an effective/inexpensive measure of prevention of lower Ipfencarbazone respiratory tract infections in infancy (32, 33). However, a variable antiviral activity of HM was observed against different HRhV serotypes circulating worldwide (6). Although the anti-HRoV activity of lactoferrin and of milk fat Rabbit polyclonal to AGER globule membrane components that contains bioactive glycoproteins and glycolipids has been widely reported in Ipfencarbazone the past, Pfaender et Ipfencarbazone al. did not evidence Ipfencarbazone a pronounced reduction in viral titers of HRoV by HM (30, 34). By contrast, our study reports a clear anti-HRoV effect for both milk pools, supporting protection of breastfed children against gastrointestinal viral contamination. The differences in the serostatus of the donor mothers for each virus along with the interpersonal variability in the content of antiviral components of HM may explain the different extents of antiviral potencies between the two HM pools, and some inconsistencies with previous literature. Figure ?Physique1B1B shows representative images of the total inhibitory effect of raw milk at a 1:2 dilution against all tested viral infections. Of note, all the antiviral activities were not a consequence of cytotoxicity of HM samples, since the CD50 of milk was one or two logarithms greater than the ID50 (data not shown). Open in a separate window Physique 1 (A) Antiviral activities against HSV-1, HSV-2, HCMV, RSV, HRhV, and.